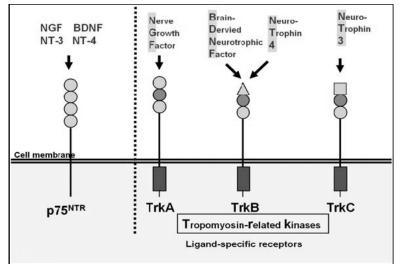
Review article

Neurogenic inflammation and allergy

Gehan A. Mostafa


Assistant Professor of Pediatrics, Ain Shams University, Cairo

Neurogenic inflammation encompasses a series of vascular and non-vascular inflammatory responses, triggered by the activation of primary sensory neurons with a subsequent release of inflammatory neuromediators, resulting in a neurally mediated immune inflammation^{1,2}.

Neuromediators are mainly released from neurons. Immune and/or structural cells are secondary sources of these mediators during immune inflammation^{3,4}. Neuromediators include neurotrophins and neuropeptides⁴ (table 1).

Table 1. Mediators of neurogenic inflammation (neuromediators) ^{5,6} .
--

Neurotrophins	Neuropeptides
Nerve growth factor (NGF)	Calcitonin gene-related peptide (CGRP)
Brain-derived neurotrophic factor (BDNF)	Vasoactive intestinal peptide (VIP)
Neurotrophin (NT)-3	Neuropeptide Y (NPY)
Neurotrophin-4/5	Tachykinins (substance P, neurokinin A and neurokinin B)
Neurotrophin 6 and 7	

BDNF: brain-derived neurotrophic factor; NGF: nerve growth factor; NT: neurotrophin.

Figure 1. Signaling of neurotrophins via cell surface receptors.

Members of the neurotrophin family bind to ligand-specific (high affinity) tropomyosine-related kinase (Trk) receptors. In addition, all neurotrophins bind to the common pan-neurotrophin (low affinity) receptor p75NTR. The high affinity receptors mediate trophic effects, whereas the low affinity receptor may be involved in induction of apoptosis. (Quoted from Nockher and Renz, 2006)⁵.

Neurotrophins are protein family of neuronal growth factors that control the survival. differentiation and maintenance of neurons in the peripheral as well as in the central nervous system in the embryonic and postnatal stages⁷. They induce a variety of responses in peripheral sensory and sympathetic neurons. These effects include chemotaxis. regulation of neurotransmitter production and excitability, establishment of functional synapses and control of metabolic functions and peripheral axonal branching. Overexpression of neurotrophins in peripheral body tissues results in sensory hyperinnervation⁸. Neurotrophins exert their cellular effects by interaction with two structurally unrelated receptors differing in specificity for ligand and signal transduction activities^{9,10} (Fig. 1).

Tachykinins have previously been considered as a group of neuropeptides because of their widespread distribution in the central and the peripheral nervous system (capsaicin sensitive primary afferent neurons and capsaicin insensitive intrinsic neurons). This terminology is no longer held since their presence in a variety of non-neuronal structures has been demonstrated repeatedly^{11,12}. The biological activity of tachykinins, the neurotransmitters of the excitatory part of the nonadrenergic, noncholinergic (NANC) nervous system, depends on their interaction with three specific tachykinin receptors, neurokinin (NK)1 (specific for substance P), NK2 (specific for neurokinin A) and NK3 (specific for neurokinin B) receptors¹³⁻¹⁵. The adequate stimuli for tachykinin release from the sensory nerves in the airways are of chemical nature (especially those chemicals that are produced during inflammation and tissue damage). VIP, an anti-inflammatory neuropeptide, is a neurotransmitter of the inhibitory part of the NANC nervous system¹⁶.

Peptidases are involved in the breakdown of neuropeptides¹⁷. Both neutral endopeptidase (NEP) and angiotensin converting enzyme (ACE) are involved in tachykinin breakdown¹⁸. NEP has been located to the airway mucosa and submucosa in contrast to ACE, which has been located in vascular cells. It has therefore been proposed that NEP is the main regulator of tachykinins in the airway, whereas ACE may influence tachykinins in the vascular space¹⁹. A decrease in NEP activity has been observed in response to substances which exacerbate asthma, such as smoking¹⁸. Smoking has also been found to promote the release of substance P (SP) from sensory nerves in addition to increasing NK1 and NK2 receptors in comparison to nonsmokers²⁰. Therefore, smoking could potentially act as a pro-inflammatory stimulus that upregulates tachykinin activity in the airway, partly due to the decrease in NEP activity. Sont and coworkers²¹ found that NEP expression was higher in the airway epithelium from asthmatic patients using inhaled corticosteroids with compared steroid-naïve asthmatic subjects, suggesting that NEP is upregulated by steroid use. It has therefore been postulated that NEP activity may have an important role in the regulation of tachykinin induced responses in human asthma¹⁸.

Neuroimmune interaction in allergy

Understanding the complex pathophysiology of allergic diseases has been a main challenge of clinical and experimental research for many years. During allergic inflammation, a bidirectional

regulation of neuronal stimulation and allergic inflammation has been prospected. Neuromediators represent the key factor of this process, working on either immune or structural cells and exerting neuroimmunomodulatory functions⁵. Studies have demonstrated that in allergic inflammation, various cytokines, such as interleukin (IL)-1, mediate signals from the immune to the nervous system and stimulate neuromediator synthesis²². Vice versa, evidence has emerged that allergic inflammatory responses are controlled by neuromediators^{5,23}. Therefore, signaling molecules that mediate inflammatory interactions among immune. neuronal, and structural cells (neuromediators) are becoming a focus of allergy research⁵. Because neuropeptides are short-lived signaling molecules that are rapidly degraded, their action is temporally limited and mainly restricted to the site of synthesis²⁴. Neurotrophins, however, were found to during continuously be produced allergic inflammation. Thus, neuropeptides are considered to be the major initiators of allergic inflammation^{19,25}, while neurotrophins might act as long-term modulators, amplifying inflammatory signals between the nervous and immune systems during allergic inflammation^{26,27}.

Sources of neuromediators in allergy:

Under physiological conditions, the primary sources of neuromediators are neuronal cells and nerve-associated cells, such as Schwann cells, glial cells, or fibroblasts²⁸. During allergic inflammation, cells of the immune system and structural cells are able to express both the neuromediators and their corresponding receptors^{4,23}.

Neuromediators and immune cells:

• Monocytes/macrophages:

Alveolar macrophages produce neurotrophins after allergen challenge²⁹. Monocytes isolated from human peripheral blood showed a constitutive expression of neurotrophins in patients with allergy compared with those obtained from healthy donors³⁰.

• Eosinophils:

Eosinophils are potentially able to express cell surface receptors for all neurotrophins, but receptor expression may depend on the level of maturation or activation level of these cells³¹. In one study, circulating blood eosinophils from patients with allergy did not show any Trk expression, but more importantly, eosinophils obtained from the bronchoalveolar lavage fluid (BALF) after allergen provocation expressed all neurotrophin receptors³².

• Lymphocytes:

T lymphocytes have been shown to produce neuromediators, but the amount of synthesis depends on the activation level. T cells isolated from the inflamed lung showed high levels of BDNF synthesis, whereas T cells isolated from the spleen did not produce detectable BDNF. These differences may result from different T-cell populations in spleen and lung and/or a preactivation state of lung T cells at the site of local inflammation³³.

Neuromediators and structural cells:

There is growing evidence that structural cells are actively involved in the local inflammatory response through synthesis of cytokines and other mediators²⁸. Constitutive expression of many neuromediators in mouse lung epithelial cells is markedly upregulated after repeated allergen challenges in a murine model of experimental allergic asthma³⁴. This finding indicates that the airway epithelium may be an important source for increased expression of some neuromediators in the allergic lung³⁵. In the skin, keratinocytes are

recognized as a primary source of some neuromediators during inflammatory conditions³⁶.

How neuromediators result in progression and amplification of allergic inflammation? A. Neuronal plasticity:

Local overproduction of neurotrophins during allergic inflammation results in increased neuronal release of neuropeptides such as tachykinins, exhibiting a great degree of functional plasticity defined as neuronal plasticity (Fig. 2). The consequences are the development of neurogenic inflammation^{37,38}. Neuropeptides released by sensory neurons then modulate a broad range of functional responses of immune cells including lymphocytes. eosinophils, mast cells. and macrophages, leading to activation and differentiation of these cells^{22,39}. Immune cells contribute to this process by virtue of their neurotrophin expression. Therefore, neurotrophins can influence the intensity and duration of a local immune response either by direct signaling through specific neurotrophin receptors or through upregulation of neuropeptide synthesis.

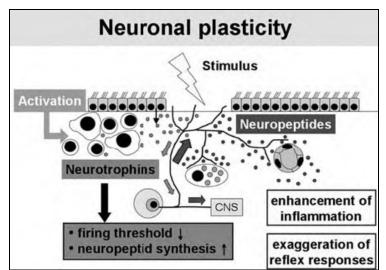
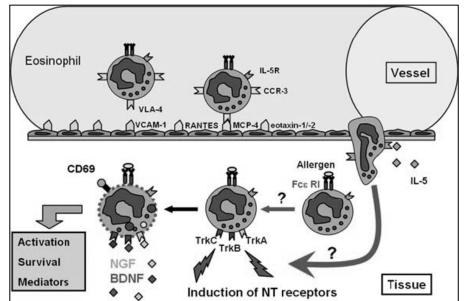


Figure 2. Neuronal plasticity mediated by neurotrophins. (Quoted from Renz et al., 2004)³⁸

B- Immunological plasticity:

Neurotrophins act in autocrine as well as paracrine signaling. Because the pathophysiology of allergic diseases is characterized by the progression of allergic inflammation, the potential role of neurotrophins in progression and amplification of allergic inflammation is of a great interest. These effects are described by the term immunological plasticity that include enhancement of survival, differentiation, and/or proliferation of immune cells and activation of release of cytokines or mediators⁵. Therefore, neurogenic inflammation describes a vicious cycle of neuroimmune interactions that amplify allergic inflammation and neurotrophins are cross talks between immune and nervous systems in allergic inflammation^{22,38,39}.


Tissue mast cell numbers are dependent on factors controlling infiltration, local development, and survival in the tissues. An increase in mast cell numbers is a characteristic feature of the allergic inflammation⁴⁰. Several studies have suggested

that NGF is involved in the development and maintenance of mast cell hyperplasia in the allergic airways⁴¹. In addition, NGF functions as a chemoattractant for mast cells^{41,42} and also supports the survival of mast cells as a cofactor together with stem cell factor⁴³. Neuromediators also regulate mast cell degranulation and mediator release⁴⁴. Abrogation of NGF signaling by intranasal application of neutralizing antibodies inhibits allergen induced early phase reaction, which is mediated by mast cell degranulation⁴⁵. In addition, neurotrophins can directly stimulate lymphocytes to produce T-helper-2 (Th2)cytokines, going in line with the Th2 type shifted immune response. This is supported by studies in

murine asthma models showing that treatment of mice with anti-NGF antibodies decreases the function of Th2 T-cells⁴⁶. Th2 cells orchestrate many aspects of pathologic immune responses including effector functions of B-cells, mast cells and eosinophils. These cells produce an array of cytokines such as IL4, IL-5, IL-9 and IL-13. In B-cells, IL-4 and IL-13 are involved in isotype

switching towards IgE, while IL-5 possesses proinflammatory properties, for example the development, differentiation, recruitment and survival of eosinophils⁴⁷. So far, no information is available that neurotrophins directly influence the switch of naive CD41 T cells into Th2 cells. However, at least in a transgenic mouse model, NT-3 selectively supports the activity of antigenspecific Th2 cells but not of Th1 cells because of an expression of the TrkC receptor on Th2 but not TH1 cells⁴⁶.

Neurotrophins also influence the developing immune response by acting as cytokines²³. Moreover, in vitro studies have showed prolonged survival of BALF, but not blood eosinophils, by all members of mammalian neurotrophins due to their antiapoptotic effects³². Neurotrophin mediated survival of eosinophils (fig. 3) might contribute to the massive eosinophilia observed during asthma and it also contributes to increased airway inflammation. NGF and BDNF are also eosinophil chemo-attractants²⁷.

BDNF: brain-derived neurotrophic factor; MCP: monocyte chemoattractant protein; NGF: nerve growth factor; NT: neurotrophins; VCAM-1: vascular cell adhesion molecule 1; VLA-4: very late antigen 4.

Figure 3. Neurotrophins modulate biological effects of infiltrated eosinophils in the allergic airway. Within the inflamed tissue, expression of neurotrophins is increased. Eosinophils are then susceptible to neurotrophin-induced activation and survival. (Quoted from Nockher and Renz, 2006)²⁷

C- Angiogenesis and microvascular remodeling:

Angiogenesis encompasses the formation of vascular tissue from pre-existing vessels. Microvascular remodeling involves structural alterations of arterioles, capillaries, or venules without the formation of new vessels. Both are

complex events that are regulated by a large number of mediators such as cytokines and growth factors⁴⁸. Both angiogenesis and microvascular remodeling mainly result from endothelial cell proliferation and often occur simultaneously. It has been recognized that neurotrophins and tachykinins are vasoactive factors affecting endothelial cell biology and elicit angiogenesis⁴⁹. Moreover, it has been shown that NGF induces matrix metalloproteinase expression in vascular smooth muscle cells which contributes to the migratory response of smooth muscle cells by releasing them from their surrounding extracellular matrix after injury^{50,51}.

Neurogenic inflammation in some allergic diseases:

Bronchial asthma

Bronchial asthma is characterized by chronic airway inflammation, development of airway hyperreactivity (AHR), recurrent reversible airway obstruction and airway remodeling⁵. Bronchial asthma is more than an immunological disorder and both peripheral and central neural mechanisms are also involved in the pathogenesis of asthma⁵². It is now clear that inflammation and AHR do not develop independently from one another, but they are associated through a bidirectional signaling between cells of the immune and nervous systems. Therefore, the search for bidirectional signaling molecules between immune cells and neurons has become a novel focus regarding asthma research 27 . Neurotrophins are constitutively expressed by resident lung cells and are produced in increasing concentrations by immune cells invading the airways during allergic inflammation ³⁸ (Fig. 4). Neurotrophins modify the functional activity of sensory and motor neurons, leading to enhanced altered neuropeptide and tachykinin and production³⁸. Tachykinins interact in the airways with tachykinin NK1, NK2 and NK3 receptors to cause bronchoconstriction, plasma protein extravasation, and mucus secretion and to attract and activate immune cells. In preclinical studies, tachykinins have been implicated in the pathophysiology of asthma 53.

AHR, an important hallmark in the pathogenesis of asthma, may be defined as an increase in the ease and degree of airway narrowing in response to a wide range of bronchoconstrictor stimuli due to activity^{54.} enhanced cholinergic Cholinergic activities were shown to be increased by tachykinins^{55,56}. Neurotrophin- induced neuronal plasticity may induce AHR⁵⁷ (Fig. 5). Neurotrophin-induced AHR may be the result of airway inflammation, as the infiltrating cells are capable of producing neurotrophins. NGF can induce AHR even without the background of inflammation, as NGF treatment of mice induced AHR. Thus, neurogenic inflammation describes a vicious cycle of neuroimmune interactions that

amplify airway inflammation and AHR in allergic asthma^{22,39}.

NGF may be also involved in airway remodeling. Beside its effects on bronchial smooth muscle and hyperinnervation with sensory nerves, NGF induces fibroblast migration and differentiation into myofibroblasts, as well as collagen production^{58,59}. Additionally, NGF plays a role in increased vascularisation by inducing endothelial cell and vascular smooth muscle cell proliferation and stimulating the release of proangiogenic factors⁶⁰.

Is there is a role for neurogenic inflammation in asthma in humans?

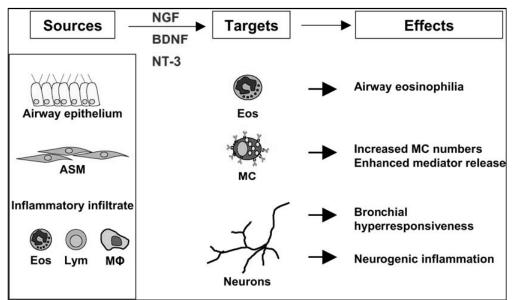
Whilst there is convincing evidence of neurogenic inflammation in various animal models of asthma, the evidence in humans is less clear. Replication of the experimental approaches in humans has proven difficult with conflicting results. In terms of human studies, the three main investigative approaches have been:

1. Studies to determine if pro-inflammatory neuropeptides and neurotrophins are elevated in the airways in asthma.

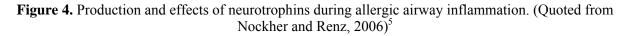
2. Studies to examine different functional effects of neuropeptides and neurotrophins in asthma.

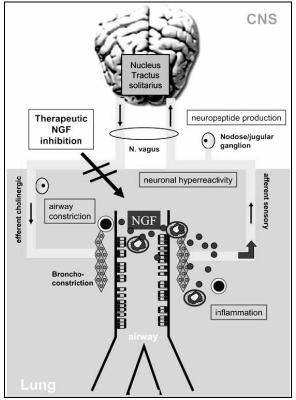
3. Studies using inhibitors of pro-inflammatory neuropeptides to attempt to improve indices of asthma control in humans⁶¹.

Atopic dermatitis and stress? How do emotions come into skin?

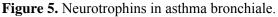

Several common skin diseases are now acknowledged to be worsened by psychological stress, particularly immunodermatoses such as atopic dermatitis (AD), psoriasis, seborrheic eczema, prurigo nodularis, lichen planus, chronic urticaria and alopecia areata. AD is a chronic inflammatory skin disease associated with cutaneous hyperreactivity to environmental triggers, and is often the first step in the atopic march resulting in asthma and allergic rhinitis⁶³. AD is a complex disease traditionally involving interaction genetic, environmental, and immunologic of factors. Recent studies suggest that psychoneuroimmunologic factors and emotional stress are important in its evolution. The observations that external (psychologic) stressors may induce AD flares is explained by studies showing that stress impairs the skin barrier function and favors a shift in immunity toward a Th2 allergic response. Furthermore, patients with AD appear to have an inherited hypothalamic deficiency that impairs hypothalamic-pituitary-adrenal normal axis function. Psychologic and stress-reduction interventions were recently shown to improve patient well-being, and to significantly improve cutaneous manifestations⁶⁴.

Mast cells play a key role in the development of inflammatory reaction to stress. Enhanced levels of neuropeptides released from nerve endings, resident cells (e.g., keratinocytes, fibroblasts, epidermal, dendritic and Langerhans cells) and immune cells influence the exacerbation of AD through enhancement of mast cell degranulation. This leads to the recruitment of inflammatory cells to the site vasodilatation and plasma of inflammation. extravasation, modulation of immunocyte function (e.g. mediator release from T-lymphocytes, induction of antibodies production from B cells and modulation of antigen presentation in Langerhans cells) and regulation of mediator release (cytokines, chemokines and growth factors). The epidermal keratinocytes are also affected by neurogenic inflammation (proliferation, apoptosis, spongiosis and edema). Modern biopsychosocial interventions can markedly benefit the well-being of AD patients, including improvement of skin manifestations (Fig. 6). Various forms of relaxation therapy, biofeedback, autogenic training, massage therapy, and hypnosis have been used in treating dermatologic diseases. Although aimed at decreasing stress and anxiety, controlled studies of


these interventions in AD have encountered contradictory results^{64,65}.

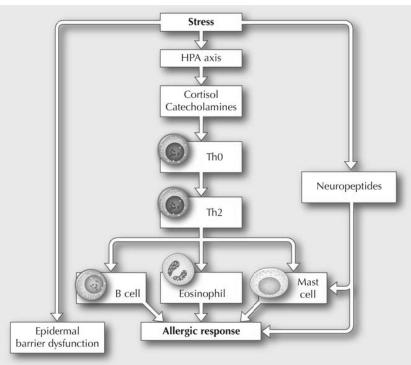

Allergic rhinosinusitis

The nose is an air conditioner and is involved in the protection of the lower airways against inhalation of exogenous particles and airborne irritants. The nasal mucosa is therefore densely innervated by sensory nerves containing several neuropeptides⁶⁶. In the airways, activation of sensory nerves leads to the release of multiple neuropeptides. In addition to their involvement in vasodilatation, plasma protein exudation and mucus secretion. sensory neuropeptides also participate in inflammatory cell neurogenic recruitment. This inflammation contributes to the intensity of nasal obstruction, rhinorrhea and headaches, the most common chronic rhinosinusitis⁶⁷. symptoms in The concentration of neuropeptides is increased in the nasal mucosa of patients suffering from chronic rhinosinusitis. In contrast, the activity of the enzymes involved in the degradation of these sensory neuropeptides is markedly reduced. These observations should contribute to a better understanding pathophysiological of the mechanisms of one of the most frequently occurring chronic inflammatory diseases⁶⁶.



ASM: airway smooth muscles; BDNF: brain-derived neurotrophic factor; Eos: eosinophils; Lym: lymphocytes; Mc: mast cells ; Mo: monocytes; NGF: nerve growth factor; NT-3: neurotrophin-3.

NGF, nerve growth factor



Inflammation derived neurotrophins such as NGF promote central features of allergic asthma. Neurotrophins induce neuropeptide production and neuronal hyperreactivity using a mechanism that is comparable to inflammatory pain. These events contribute to facilitated airway constriction (airway hyperreactivity). In addition, NGF can act directly as a proinflammatory cytokine-like factor. (Quoted from Schulte-Herbrüggen et al., 2007)⁶²

Table 2. Some tachykinin receptors antagonists studies in humans	Table 2. Some	e tachykinin recepto	ors antagonists studi	es in humans
--	---------------	----------------------	-----------------------	--------------

Name	Inhibits	Clinical Effect
FK22494	NK1/ NK2	Inhibited bradykinin induced bronchoconstriction.
		No effect on NKA induced bronchoconstriction.
CP-99,99495	NK1	No effect on lung function/ hypertonic saline bronchoconstriction.
FK-88896	NK1	No effect on lung function / exercise induced bronchoconstriction
		(reduced recovery time).
SR 4896897	NK2	Inhibited NKA induced bronchoconstriction
		No effect on lung function / AMP challenge.
DNK33398	NK1/ NK2	Inhibited NKA induced bronchoconstriction.
AVE588399	NK1/ NK2	Inhibited NKA induced bronchoconstriction
		No effect (? Potentiation of allergen induced late phase response).
		(Quoted from Butler and Heaney, 2007) ⁶

51

HPA axis: hypothalamic-pituitary-adrenal axis; Th: T-helper lymphocytes.

Figure 6. Effects of stress on atopic dermatitis

When the brain identifies an external perceived stressor, corticotropin- releasing hormone (CRH) is secreted from the hypothalamus, transported through the portal circulation to the pituitary, and induces adrenocorticotropic hormone release from the anterior pituitary into the general circulation. Simultaneous sympathetic nervous system activation results in glucocorticosteroid, catecholamine, and neuropeptide secretion. Catecholamines and cortisol have a potent effect on the immune system. They mediate differentiation of naive T helper cells toward Th2 phenotype. This tilts the balance toward humoral immunity by increasing production of IL-4, IL-5, and IL-13; these activate B-cells, mast cells, and eosinophils, increasing the allergic inflammatory response, and exacerbating Th2-mediated diseases involving these pathways. Additionally, cutaneous neuropeptides (egg, substance P) stimulate mast cells and mediate AD deterioration. Another known effect of stress is disruption of the skin barrier function, leading to increased infections and possibly

enhanced cutaneous penetration of allergens. (Quoted from Arndt et al., 2008)⁶⁴

Ocular allergy

Ocular allergy is a common disorder affecting 20% of the population in developing countries. Ocular allergy comprises the acute (self-limiting) type-I hypersensitivity seasonal and perennial allergic conjunctivitis and the more complex, chronic and severe forms of atopic and vernal giant keratoconjunctivitis, papillary and conjunctivitis. Disease severity can range from mild itching and redness to the more serious vision threatening forms affecting the cornea⁶⁸. As a recent point of view, during allergic states, several neuromediators are released from intracellular sites or their expression is changed. They drive the common signs of ocular allergic inflammation (pain, redness, swelling, heat), by acting directly on cells responsible for both early and late phase reactions as well as on epithelial cells and fibroblasts, leading to either self-limiting or chronicity states. In allergic conjunctivitis, the main mediator is histamine which is a vasoactive peptide that drives vasodilation, vascular permeability, cell proliferation, tissue growth and repair⁶⁹. SP and NGF may drive histamine release from mast cells^{70,71}.

Neurogenic inflammation and allergy in clinical practice

1- Assessment of the severity of inflammation in some allergic diseases

Bronchoalveolar lavage, sputum and peripheral blood samples have been used to assess the presence of neuromediators and their receptors in allergic diseases⁶¹. In clinical practice, assessment of airway inflammation is difficult. Therefore, detection of biological markers of airway inflammation might offer help for proper monitoring of asthma severity for better management of this disease⁷². Sputum BDNF and serum CGRP levels were reported to be upregulated during acute asthma exacerbations and their levels positively correlated with eosinophil numbers in sputum and blood, respectively^{73,74}. A recent study⁷⁵ conducted on 24 Egyptian children and adolescents during and after acute asthma exacerbations demonstrated that sputum NKA levels were up-regulated during acute asthma exacerbations and they positively correlated with exacerbation severity.

2-Therapeutic applications

Neurotrophin antagonism:

Neurotrophin antagonism for asthma therapy has not been tested in humans so far. However, there are now a number of highly specific antagonists under development⁷⁶⁻⁷⁹ only tested in animal models of asthma⁸⁰. Several pharmacological strategies were used in animal models of asthma:

1. Direct blocking of neurotrophins by antibodies^{45,81,82}.

2. Blocking the high affinity receptors Trks by decoy or antibodies⁸³.

3. Blocking the low affinity panneurotrophin receptor p75NTR by antibodies⁸⁴.

4. Blocking neurotrophin signal transduction by tyrosine kinase inhibitors like K252a or tyrphostin AG879⁸⁵.

These experiments demonstrated that blocking of neurotrophins or their receptors is able to inhibit the development of the key characteristics of asthma in preclinical models (mouse, rat and guinea pig). Blocking neurotrophins diminished the main features of human asthma like airway inflammation, airway hyperreactivity and allergen specific early response^{70,86,87}. However, phase there are considerable concerns about the use of neurotrophin antagonists in human asthma. Neurotrophins are highly potent factors involved in many essential physiological conditions, especially in the central nervous system, where they can induce long lasting alterations. Thus, a careful balance with respect to the expected beneficial pharmacological actions in comparison to the possible side effects is essential. Since asthma has several effective conventional treatment options like steroids, the use of neurotrophin antagonists is critical for the treatment of asthma. However, there are patient subgroups with severe, difficult to treat asthma that might benefit from new therapeutic options⁶².

Neuropeptides antagonism:

A number of strategies are possible to interfere with the action of sensory neuropeptides in the airways: that include:

1. Depletion of neuropeptides within nerves [e.g. by the neurotoxin capsaicin].

2. Inhibition of the release of sensory neuropeptides [e.g. by β 2-adrenoceptor agonist, theophylline, cromoglycate or phosphodiesterase (PDE4) inhibitors].

3. Inhibition of tachykinin receptors by receptor antagonists. A number of receptor antagonists have been used such as dual NK1/NK2 or triple NK1/NK2/NK3 tachykinin receptor antagonists⁸⁸ (table 2), but they seem unlikely to confer any additional benefit to inhaled steroid therapy in humans. This is in contrast to the extensive and overwhelming data suggesting а role for tachykinins asthma. There several in are explanations for this apparent paradox^{89,90}:

a. The lack of efficacy can be easily explained by the low potency or defective pharmacokinetics of the compounds tested so far. Potent tachykinin receptor antagonists have not been considered for application in airways diseases, but for depression or emesis⁹¹.

b. Blocking either NK1 or NK2 receptor is probably an insufficient approach, as most of the effects of tachykinins in the airways are mediated by more than one tachykinin receptor.

c. In the application of a new tachykinin receptor antagonist to airway diseases, it is crucial that one first demonstrates that the antagonist is indeed able to block airway effects of an agonist (e.g. SP or neurokinin A). This allows to determine the in vivo activity of the antagonist under consideration and to determine dose and dosing frequency for further clinical study.

Once a potent drug is identified, that can be administered twice, or preferably once a day, clinical studies are to be conducted to define the potential therapeutic benefit in either asthma or chronic obstructive pulmonary disease. These clinical studies will need to last for at least 3, preferably 6 or 12 months, in order to demonstrate changes in relevant clinical outcomes. This is especially important to detect a possible effect on exacerbations of asthma or chronic obstructive pulmonary disease, situations where a release of tachykinins from human airway tissue has been suggested to occur^{92,93}.

Key Messages

Tissue and immune cells produce and respond to neuromediators. Studies of various allergic diseases performed over the period of the last 2 decades indicate that neuromediators are upregulated in allergic diseases such as bronchial asthma and atopic dermatitis and may act as inflammatory cytokines. There is a growing evidence that neuromediators are part of an integrated adaptive response to several offending stimuli that **connect cells of the immune and nervous system together with structural cells**. On the basis of these observations, a more intense investigation of the complex biological functions of neuromediators might open new opportunities for the development of novel therapeutic intervention strategies beyond the currently available antiinflammatory drugs.

REFERENCES

- 1. **GEPPETTI P, NASSINI R, MATERAZZI S, BENEMEI S.** The concept of neurogenic inflammation. BJU Int 2008; 101 (Suppl 3): 2-6
- 2. **RICHARDSON JD, VASKO MR.** Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 2002; 302 (3): 839–45.
- NOCKHER WA, RENZ H. Neurotrophins in inflammatory lung diseases: modulators of cell differentiation and neuroimmune interactions. Cytokine Growth Factor Rev 2003; 14: 559-78.
- 4. MICERA A, LAMBIASE A, BONINI S. The role of neuromediators in ocular allergy. Curr Opin Allergy Clin Immunol 2008;8(5):466-71.
- NOCKHER WA, RENZ H. Neurotrophins in allergic diseases: From neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol 2006; 117: 583-9.
- 6. DE SWERT KO, JODS GF. Extending the understanding of sensory neuropeptides. Eur J Pharmacol 2006; 533: 171–81.
- 7. **ERNFORS P.** Local and target-derived actions of neurotrophins during peripheral nervous system development. Cell Mol Life Sci 2001;58: 1036-44.
- HOYLE GW, GRAHAM RM, FINKELSTEIN JB, NGUYEN KP, GOZAL D, FRIEDMAN M. Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am J Respir Cell Mol Biol 1998; 18: 149-57.
- 9. **PATTARAWARAPAN M, BURGES K.** Molecular basis of neurotrophin-receptor interactions. J Med Chem 2003; 46: 5277-91.
- SARIDLA H. The neurotrophic factors in nonneuronal tissues. Cell Mol Life Sci 2001; 58: 1061-6.
- 11. SEVERINI C, IMPROTA G, FALCONIERI-ERSPAMER G, SALVADORI S, ERSPAMER V. The tachykinin Peptide family. Pharmacol Rev 2002; 54: 285–322.

- PENNEFATHER JN, LECCI A, CANDENAS ML, PATAK
 E, PINTO FM, MAGGI CA. Tachykinins and tachykinin receptors: a growing family. Life Sci 2004; 74: 1445–63.
- 13. MAGGI CA. Tachykinin receptors and airway pathophysiology. Eur Respir J 1993; 6: 735–42.
- MAGGI CA. The troubled story of tachykinins and neurokinins. Trends Pharmacol Sci 2000;21: 173– 175.
- 15. ALMEIDA TA, ROJO J, NIETO PM, PINTO FM, HERNANDEZ M, MARTIN JD, ET AL. Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 2004; 11: 2045–81.
- 16. **GRONEBERG DA, RABE KF, FISCHER A.** Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 2006 8; 533(1-3): 182-94.
- CHANEZ P, SPRINGALL D, VIGNOLA AM, MORADOGHI-HATTVANI A, POLAK JM, GODARD P, ET AL. Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases. Am J Respir Crit Care Med 1998; 158(3): 985-90.
- DI MARIA GU, BELLOFIDRE S, GEPPETTI P. Regulation of airway neurogenic inflammation by neutral endopeptidase. Eur Respir J 1998; 12(6): 1454-62.
- 19. GRONEBERG DA, QUARCOD D, FROSSARD N, FISCHER A. Neurogenic mechanisms in bronchial inflammatory diseases. Allergy 2004; 59: 1139–52.
- BAI TR, ZHOU D, WEIR T, WALKER B, HEGELE R, HAYASHI S, ET AL. Substance P (NK1)- and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol 1995; 269(3 Pt 1): L309-17.
- 21. SONT JK, VAN KRIEKEN JH, VAN KLINK HC, ROLDAAN AC, APAP CR, WILLEMS LN, ET AL. Enhanced expression of neutral endopeptidase (NEP) in airway epithelium in biopsies from steroidversus nonsteroid-treated patients with atopic asthma. Am J Respir Cell Mol Biol 1997; 16(5): 549-56.
- 22. D'CONNOR TM, D'CONNELL J, D'BRIEN DI, GOODE T, BREDIN CP, SHANAHAN F. The role of substance P in inflammatory disease. J Cell Physiol 2004; 201: 167-80.
- BONINI S, RASI G, BRACCI-LAUDIERO ML, PROCOLI A, ALOE L. Nerve growth factor: neurotrophin or cytokine? Int Arch Allergy Immunol 2003; 131: 80-4.

- 24. **NADEL JA.** Neutral endopeptidase modulates neurogenic inflammation. Eur Respir J 1991; 4: 745-54.
- 25. **BARNES PJ.** Neurogenic inflammation in the airways. Respir Physiol 2001; 125: 145–54.
- 26. HAHN C, ISLAMIAN AP, RENZ H, NOCKHER WA. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 2006; 117(4): 787-94.
- NOCKHER WA, RENZ H. Neurotrophins and asthma: Novel insight into neuroimmune interaction. J Allergy Clin Immunol 2006; 117: 67-71
- LOMMATZSCH M, BRAUN A, MANNSFELDT A, BOTCHKAREV VA, BOTCHKAREVA NV, PAUS R, ET AL. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am J Pathol 1999; 15: 1183-93.
- 29. POULIOT P, TURMEL V, GELINAS E, LAVIOLETTE M, BISSONETTE EY. Interleukin-4 production by human alveolar macrophages. Clin Exp Allergy 2005; 35: 804-10.
- 30. KERSCHENSTEINER M, GALLMEIER E, BEHRENS L, LEAL VV, MISGELD T, KLINKERT WE, ET AL. Activated human T cells, B cells, and monocyte produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999; 189: 865-70.
- LABOUYRIE E, DUBUS P, GROPPI A, MAHON FX, FERRER J, PARRENS M, ET AL. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 1999; 154: 405-15.
- 32. NASSENSTEIN C, BRAUN A, ERPENBECK VJ, LOMMATZSCH M, SCHMIDT S, KRUG N, ET AL. The neurotrophins nerve growth factor, brain-derived neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma. J Exp Med 2003; 198: 455- 67.
- 33. BAROUCH R, APPEL E, KAZIMIRSKY G, BRAUN A, RENZ H, BRODIE C. Differential regulation of neurotrophin expression by mitogens and neurotransmitters in mouse lymphocytes. J Neuroimmunol 2000; 103: 112-21.
- 34. BRAUN A, LOMMATZSCH M, MANNSFELDT A, NEUHAUS-STEINMETZ U, FISCHER A, SCHNOY N, ET AL. Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 1999; 21: 537-46.

- 35. **DLGART-HO**"GLUND **D**, **DE BLAY F**, **DSTER JP**, **DUVERNELLE C**, **KABSEL D**, **PAULI G**, **ET AL.** Nerve growth factor levels and localization in human asthmatic bronchi. Eur Respir J 2002; 20: 1110-6.
- 36. **RAYCHAUDHURI SP, JIANG WY, FARBER EM.** Psoriatic keratinocytes express high levels of nerve growth factor. Acta Derm Venereol 1998; 78: 84-6.
- 37. CARR MJ, HUNTER DD, UNEM BJ. Neurotrophins and asthma. Curr Opin Pulm Med 2001; 7: 1-7.
- RENZ H, KERZEL S, NOCKHE WA. The role of neurotrophins in bronchial asthma: contribution of the pan-neurotrophin receptor p751. Prog Brain Res 2004; 146:325-33.
- 39. JAMES DE, NIJKAMP FP. Neuro-immune interactions in the lung. Clin Exp Allergy 1999; 29: 1309-19.
- 40. KASSEL D, DE BLAY F, DUVERNELLE C, DLGART C, ISRAEL-BIET D, KRIEGER P, ET AL. Local increase in the number of mast cells and expression of nerve growth factor in the bronchus of asthmatic patients after repeated inhalation of allergen at low-dose. Clin Exp Allergy 2001; 31: 1432-40.
- 41. SAWADA J, ITAKURA A, TANAKA A, FURUSAKA T, MATSUDA H. Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated kinase and phosphatidylinositol 3kinase signaling pathways. Blood 2000; 95: 2052-8.
- 42. PIETRZAK A, MIBIAK-TŁOCZEK A, BRZEZI SKA-BŁASZCZYK E. Interleukin (IL)-10 inhibits RANTES-, tumour necrosis factor (TNF)- and nerve growth factor (NGF)-induced mast cell migratory response but is not a mast cell chemoattractant. Immunol Lett 2009; 123(1): 46-51
- 43. KANBE N, KURDSAWA M, MIYACHI Y, KANBE M, SAITDH H, MATSUDA H. Nerve growth factor prevents apoptosis of cord blood-derived human cultured mast cells synergistically with stem cell factor. Clin Exp Allergy 2000; 30: 1113-20.
- 44. **STEMPELJ M, FERJAN I.** Signaling pathway in nerve growth factor induced histamine release from rat mast cells. Inflamm Res 2005; 54(8): 344-9.
- 45. BRAUN A, APPEL E, BARUCH R, HERZ U, BOTCHKAREV V, PAUS R, ET AL. Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur J Immunol 1998; 28(10): 3240-51.
- 46. SEKIMOTO M, TSUJI T, MATSUZAKI J, CHAMOTO K, KODA T, NEMOTO K, ET AL. Functional expression of the TrkC gene, encoding a high affinity receptor for NT-3, in antigen-specific T helper type 2 (Th2) cells. Immunol Lett 2003; 88 :221-6.

- 47. JODS GF, LEFEBVRE RA, BULLOCK GR, PAUWELS RA. Role of 5-hydroxytryptamine and mast cells in the tachykinin-induced contraction of rat trachea in vitro. Eur J Pharmacol 1997; 338: 259–68.
- MCDONALD DM. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med 2001; 164: S39-45.
- 49. KIM H, LI Q, HEMPSTEAD BL, MADRI JA. Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain endothelial cells. J Biol Chem 2004; 279: 33538-46.
- 50. KHAN KMF, FALCONE DJ, KRAEMER R. Nerve growth factor activation of Erk-1 and Erk-2 induces matrix metalloproteinase-9 expression in vascular smooth muscle cells. J Biol Chem 2002; 277: 2353-9.
- 51. WILSON JW, KOTSIMBOS T. Airway vascular remodeling in asthma. Curr Allergy Asthma Rep 2003; 3: 153-8.
- Székely JI, PATAKI A. Recent findings on the pathogenesis of bronchial asthma. Part I. Asthma as a neurohumoral disorder, a pathological vago-vagal axon reflex. Acta Physiol Hung. 2009; 96(1): 1-17.
- 53. **DE SWERT KD, JOOS GF.** Extending the understanding of sensory neuropeptides. Eur J Pharmacol 2006; 533: 171–81.
- 54. LARSEN GL, FAME TM, RENZ H, LOADER JE, GRAVES J, HILL M, ET AL. Increased acetylcholine release in tracheas from allergen-exposed IgEimmune mice. Am J Physiol 1994; 266: 263–70.
- 55. FISCHER A, MCGREGOR GP, SARIA A, PHILIPPIN B, KUMMER W. Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation. J Clin Invest 1996; 98 (10): 2284–91.
- 56. LAURENZI MA, BECCARI T, STENKE L, SJOLINDER M, STINCHI S, LINDGREN JA. Expression of mRNA encoding neurotrophins and neurotrophin receptors in human granulocytes and bone marrow cellsenhanced neurotrophin-4 expression induced by LTB4. J Leukoc Biol 1998; 64: 228–34.
- 57. BRAUN A, QUARCOD D, SCHULTE-HERBRÜGGEN D, LOMMATZSCH M, HOYLE G, RENZ H. Nerve growth factor induces airway hyperresponsiveness in mice. Int Arch Allergy Immunol 2001; 124(1-3): 205-7

- 58. MIGERA A, VIGNETI E, PICKHOLTZ D, REICH R, PAPPO D, BONINI S, ET AL. Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc Natl Acad Sci U S A 2001; 98(11):6162-7.
- 59. NITHYA M, SUGUNA L, ROBE C. The effect of nerve growth factor on the early responses during the process of wound healing. Biochim Biophys Acta 2003; 1620(1-3): 25-31.
- 60. CANTARELLA G, LEMPEREUR L, PRESTA M, RIBATTI D, LOMBARDO G, LAZAROVICI P, ET AL. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 2002; 16(10): 1307-9.
- 61. BUTLER CA, HEANEY LG. Neurogenic inflammation and asthma. Inflamm Allergy Drug Targets 2007; 6 (2): 127-32
- 62. SCHULTE-HERBRÜGGEN D, BRAUN A, ROCHLITZER S, JOCKERS-SCHERÜBL MC, HELLWEG R. Neurotrophic factors – A tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 2007; 14(22): 2318-29.
- 63. LEUNG DY, BIEBER T. Atopic dermatitis. Lancet 2003; 361: 151–60.
- 64. ARNDT J, SMITH N, TAUSK F. Stress and Atopic Dermatitis. Curr Allergy Asthma Rep 2008; 8(4): 312-17
- 65. **TAUSK FA.** Alternative medicine: is it all in your mind? Arch Dermatol 1998; 134: 1422–5.
- 66. LACROIX J S. Chronic rhinosinusitis and neuropeptides. Swiss Med Wkly 2003; 133(41-42): 560-2.
- PFAAR O, RAAP U, HOLZ M, HÖRMANN K, KLIMEK
 L. Pathophysiology of itching and sneezing in allergic rhinitis. Swiss Med Wkly 2009; 139(3-4): 35-40.
- 68. **BIELORY L, BONINI S, BONINI S.** Allergic eye disorders. Clin Allergy Immunol 2002; 16: 311–23.
- 69. AMOD R. Immunology of allergic eye disease. Curr Allergy Clin Immunol 2006; 9: 70–3.
- NABSENSTEIN C, SCHULTE-HERBRU^{*}GGEN O, RENZ H, BRAUN A. Nerve growth factor: the central hub in the development of allergic asthma? Eur J Pharmacol 2006; 533: 195–206.

- CEVIKBAS F, STEINHOFF A, HOMEY B, STEINHOFF M. Neuroimmune interactions in allergic skin diseases. Curr Opin Allergy Clin Immunol 2007; 7: 365–73.
- 72. CICUTTO LC, DOWNEY GP. Biological markers in diagnosing, monitoring and treating asthma: a focus on non-invasive measurements. AACN Clin Issues 2004; 15: 97–111.
- SALAMA AA, MOSTAFA GA, ABD EL-AZIZ, IBRAHIM MN. Brain-derived neurotrophic factor in asthmatic children. Egypt J Pediatr Allergy Immunol 2003; 1(2): 102-9.
- 74. MOSTAFA GA, AWWAD KS, ABD EL AZIZ MM, MDHAMED AK. Calcitonin gene- related peptide in asthmatic children. Egypt J Pediatr 2004; 21 (1): 19-38.
- 75. MOSTAFA GA, REDA SM, ABD EL-AZIZ MM, AHMED SA. Sputum neurokinin A in Egyptian asthmatic children and adolescents: relation to exacerbation severity. Allergy 2008; 63(9): 1244-7.
- 76. WATSON JJ, FAHEY MS, VAN DEN WORM E, ENGELS F, NIJKAMP FP, STROEMER P, ET AL. TrkAd5: A novel therapeutic agent for treatment of inflammatory pain and asthma. J Pharmacol Exp Ther 2006; 316(3): 1122-9.
- 77. ALLEN SJ, MACGOWAN SH, TREANOR JJ, FEENEY R, WILCOCK GK, DAWBARN D. Normal beta-NGF content in Alzheimer's disease cerebral cortex and hippocampus. Neurosci Lett 1991; 131(1): 135-9.
- 78. DAWBARN D, FAHEY M, WATSON J, TYLER S, SHOEMARK D, SESSIONS R, ET AL. NGF receptor TrkAd5: therapeutic agent and drug design target. Biochem Soc Trans 2006; 34(Pt 4): 587-90
- 79. PELESHOK J, SARAGOVI HU. Functional mimetics of neurotrophins and their receptors. Biochem Soc Trans 2006; 34(Pt 4): 612-7.
- NASSENSTEIN C, DAWBARN D, POLLOCK K, ALLEN SJ, ERPENBECK VJ, SPIES E, ET AL. Pulmonary distribution, regulation, and functional role of Trk receptors in a murine model of asthma. J Allergy Clin Immunol 2006; 118(3): 597-605.
- 81. BRAUN A, LOMMATZSCH M, NEUHAUS-STEINMETZ U, QUARCOD D, GLAAB T, MCGREGOR GP, ET AL. Brain-derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br J Pharmacol 2004; 141(3): 431-40.

- 82. DE VRIES A, ENGELS F, HENRICKS PA, LEUSINK-MUIS T, FISCHER A, NIJKAMP FP. Antibodies directed against nerve growth factor inhibit the acute bronchoconstriction due to allergen challenge in guinea-pigs. Clin Exp Allergy 2002; 32(2): 325-8.
- 83. SCHIFITTO G, YIANNOUTSOS C, SIMPSON DM, ADORNATO BT, SINGER EJ, HOLLANDER H, ET AL. Long-term treatment with recombinant nerve growth factor for HIV-associated sensory neuropathy. Neurology 2001 9; 57(7): 1313-6.
- 84. KERZEL S, PÄTH G, NOCKHER WA, QUARCOD D, RAAP U, GRONEBERG DA, ET AL. Pan-neurotrophin receptor p75 contributes to neuronal hyperreactivity and airway inflammation in a murine model of experimental asthma. Am J Respir Cell Mol Biol 2003; 28(2): 170-8.
- 85. DE VRIES A, ENGELS F, HENRICKS PA, LEUSINK-MUIS T, MCGREGOR GP, BRAUN A, ET AL. Airway hyper-responsiveness in allergic asthma in guineapigs is mediated by nerve growth factor via the induction of substance P: a potential role for trkA. Clin Exp Allergy 2006; 36(9): 1192-200.
- 86. ROCHLITZER S, NASSENSTEIN C, BRAUN A. The contribution of neurotrophins to the pathogenesis of allergic asthma. Biochem Soc Trans 2006; 34(Pt 4): 594-9.
- NASSENSTEIN C, BRAUN A, NOCKHER WA, RENZ H. Neurotrophin effects on eosinophils in allergic inflammation. Curr Allergy Asthma Rep 2005; 5(3): 204-11.
- LUNDBERG JM. Pharmacology of Cotransmission in the Autonomic Nervous System: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol Rev 1996; 48: 113–78.
- JODS GF, DE SWERT KO, PAUWELS RA. Airway inflammation and tachykinins: prospects for the development of tachykinin receptor antagonists. Eur J Pharmacol 2001; 429: 239–50.
- JODS GF, PAUWELS RA. Tachykinin receptor antagonists: potential in airways disease. Curr Opin Pharmacol 2001; 1: 235–41.
- 91. **DIEMUNSCH P, GRÉLOT L.** Potential of substance P antagonists as antiemetics. Drugs 2000; 60: 533–46.
- 92. LILLY CM, BAI TR, SHORE SA, HALL AE, DRAZEN JM. Neuropeptide content of lungs from asthmatic and nonasthmatic patients. Am J Respir Crit Care Med 1995; 151: 548–53.

- 93. BOSCHETTO P, MIDTTO D, BONONI I, FAGGIAN D, PLEBANI M, PAPI A, ET AL. Sputum substance P and neurokinin A are reduced during exacerbations of chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2005; 18: 199–205.
- 94. JODS GF, VAN SCHOOR J, KIPS JC, PAUWELS RA. The effect of inhaled FK224, a tachykinin NK-1 and NK-2 receptor antagonist, on neurokinin A-induced bronchoconstriction in asthmatics. Am J Respir Crit Care Med 1996; 153(6 Pt 1): 1781-4.
- 95. FAHY JV, WONG HH, GEPPETTI P, REIS JM, HARRIS SC, MACLEAN DB, ET AL. Effect of an NK1 receptor antagonist (CP-99,994) on hypertonic saline-induced bronchoconstriction and cough in male asthmatic subjects. Am J Respir Crit Care Med 1995; 152(3): 879-84.
- 96. ICHINDSE M, MIURA M, YAMAUCHI H, KAGEYAMA N, TOMAKI M, DYAKE T, ET AL . A neurokinin 1receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am J Respir Crit Care Med 1996; 153(3): 936-41.

- 97. VAN SCHOOR J, JOOS GF, CHASSON BL, BROUARD RJ, PAUWELS RA. The effect of the NK2 tachykinin receptor antagonist SR 48968 (saredutant) on neurokinin A-induced bronchoconstriction in asthmatics. Eur Respir J 1998; 12(1): 17-23.
- 98. JOOS GF, VINCKEN W, LOUIS R, SCHELFHOUT VJ, WANG JH, SHAW MJ, ET AL. Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstriction in asthma patients. . Eur Respir J 2004; 23(1): 76-81.
- 99. BOOT JD, DE HAAS S, TARASEVYCH S, ROY C, WANG L, AMIN D, ET AL. Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma. Am J Respir Crit Care Med 2007; 175(5): 450-7.